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Abstract: The governing equations of motion for a drill string  considering coupling 
between axial, lateral and torsional vibrations are obtained using a Lagrangian 
approach. The result leads to a set of non-linear equations with time varying 
coefficients. A fully coupled model for axial, lateral, and torsional vibrations of drill 
strings is presented. The bit/formation interactions are assumed to be related to the 
following parameters: bit motion, effects of gyroscopic moments, contact with the 
borehole wall, axial excitation due to bit/formation interactions, and hydrodynamic 
damping due to the presence of drilling mud. Simulation results show that parametric 
resonance and whirling may occur simultaneously within the range of operating 
conditions of drilling. The contact force between collar and borehole wall is calculated 
and its behavior is investigated. The dynamic behavior is quite complicated and may 
become non-periodic, suggesting a chaotic behavior. 
 
Keywords: Drill string, Critical speed, Whirling, Parametric resonance, Coupling 
effects. 
 
       1. Introduction 

The lower part of a drill string used for the drilling of 
oil or gas wells is usually composed of drill collars  and 
stabilizers as shown in figure (1). The drill string 
rotates during drilling, with a typical borehole diameter 
ranging from 100 to 850mm, while drill collars have a 
diameter between 100 to 200mm and a wall thickness 
up to 85mm. Stabilizers distances varies between 5 to 
50m. During drilling operations for oil wells, severe 
vibrations occur that are detrimental to the service life 
of drill strings and down-hole equipment.  
The causes of these vibrations include impact and 
friction at the borehole/drill string and bit/formation 
interfaces, imbalances, eccentricity or initial curvature 
in the drill collar sections, various linear or non-linear 
resonances.1 
Axial, lateral, and torsional vibrations are generally 
quite complex in nature. Phenomena such as bit 
bounce, stick-slip, forward and backward whirl and 
parametric instabilities have been shown to occur. It is 
well known that drill string vibrations may lead to 
fatigue failures and abrasive wear of tubulars, 
damaging the drill bit and the borehole wall.  
As a consequence, oil well drilling becomes inefficient 
and costly. On the other hand, measurements of these 
vibrations may provide valuable information about the 
drilling assembly and formation characteristics. 
Therefore vibration must be fully understood and their 
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effects should be minimized by any approach to drilling 
optimization. 
Many studies on drill string  dynamics are mostly 
concerned with axial and tensional vibrations. The 
coupling between these two motions is discussed in [1].  
Increasing the rotary speed may cause lateral problems 
such as backward and forward whirling, impacts with 
the borehole wall and parametric instabilities [2]. It is 
desirable to extend the range of safe drilling speeds and 
to achieve this, a proper understanding of the coupled 
dynamics of drill string s is necessary. Vandiver et. al.  
[3] studied the bending vibration of rotating and non-
rotating drill string s and considered the whirling and 
parametric instabilities. However, intermittent contact 
with the borehole wall was not addressed.  
A detailed study on whirling was carried out by Jansen 
[4] and Jansen et. al. [5] including the effects of impact 
with the borehole wall. Using a lumped parameter 
model, it was concluded that the resulting unstable drill 
collar motion could be periodic or chaotic. Abbassian 
et. al. [6] investigated the stability of drill string 
considering three simple mechanical systems 
representing string-torsional vibration, bit-lateral 
dynamics, and coupled torsional-lateral vibration of the 
bit string assembly. Christoforou et. al. [7] developed a 
non-linear model for a non-rotating drill string . Lateral 
vibrations which occur in the forms of whirling and 
parametric resonance have also been studied 
extensively [8]. In these studies, the torsional vibrations 
are not considered and the drill string is assumed to 
rotate at a constant speed. Consequently, the excitation 
due to bit/formation interaction was assumed to be a 
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prescribed function of time. Yigit e. al. [9] studied the 
coupled torsional and lateral vibrations and the 
excitation at the bit was assumed to be related to the 
rotating of the bit. Recently Khulief and Al-Naser [10] 
derived a finite element formulation representing the 
dynamic behavior of drill string  by employing 
Lagrangian approach.  
Their model accounts for the gyroscopic effect, the 
torsional/bending inertia coupling, and the effect of the 
gravitational force field. In another paper Khulief, Al-
Sulaiman and Bashmal [11] formulated a dynamic 
model of the drill string including the drill-pipes and 
drill-collars.  
The equation of motion of the rotating drill string was 
derived using Lagrangian approach in conjunction with 
the finite element method. The model accounted for the 
tensional–bending inertia coupling and the axial–
bending geometric nonlinear coupling.  
In addition, the model accounted for the gyroscopic 
effect, the effect of the gravitational force field, and the 
stick–slip interaction forces. In the present paper, 
coupled torsional-bending-axial motions of the drill 
strings in presence of bit motion, effects of gyroscopic 
moments, contact with the borehole wall, axial 
excitation due to bit/formation interactions, and 
hydrodynamic damping due to the presence of drilling 
mud are investigated.  
Simulation results show that parametric resonance and 
whirling may occur simultaneously within the range of 
operating conditions of drilling. The contact force 
between collar and borehole wall is calculated and its 
behavior is investigated. The dynamic behavior is quite 
complicated and may become non-periodic, suggesting 
a chaotic behavior. 

 
2. Modeling 

The bottom hole assemble (BHA) is usually composed 
of drill collars and stabilizers as shown in figure (1). 
The lower portion of the drill collars supported by the 
stabilizer is under compression due to the weight of the 
upper portion of the drill collars.  
The compressive force applied at the bit, termed 
weight-on-bit (WOB), is the essential force for the 
drilling. In this study, the lower portion of the drill 
collars is assumed to be under combined torsional, axial 
and lateral vibrations and the rest of the BHA is 
assumed to be undergoing axial vibrations. This 
assumption can be justified by considering that in most 
real applications the upper portion of the BHA is in 
permanent contact with the borehole wall. The 
transverse motion of the collars is confined by the 
borehole and is assumed to be adequately modeled as a 
Raleigh beam theory with simply supported boundary 
conditions at the stabilizer locations. The drill string  is 
assumed to be a hollow cylinder with uniform cross-
section and rotate about and undergoing transverse 
vibration which results in gyroscopic effects (Fig2).The 
equations of motion are obtained using Lagrangian 
approach assuming known modes of vibrations.  

First the axial-lateral vibrational behavior is modeled. 
Next the torsional vibrations are included in the model. 
The result is a set of non-linear coupled equations 
which should be solved numerically. 
 

 
Fig 1. A schematic of the system 

 

 
Fig 2. Section A-A trough a borehole and deflection 

drill collar 
 
2.1. Model Including Axial-Lateral Vibration  
In developing the axial-lateral vibrations of rotating 
drill string  the total kinetic energy can be written as 
[12]: 
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, l is the total BHA length, ρ  is the 

density of the material, A is the cross sectional area, I  
is the cross sectional moment of inertia and Ω  is 
drilling angular velocity. v, w and u are respectively 
deformations in directions X, Y and Z (Fig. 1).  The 
strain energy due to axial and transverse deformations 
can be expressed as: 
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where E is Young’s modulus. In equation (2) the non-
linear axial strain produces the coupling between the 
axial and transverse deflections.  
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The virtual works due to external forces are also taken 
into considerations in developing the equations of 
motions. These forces are the contact force between 
borehole and the collar, the damping force result from 
hydrodynamic drag of drilling mud, the gyroscopic 
moments, and the axial force. 
The contact force between borehole and the collar is 
defined using the Hertzian law as: 
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where  is the Hertizan stiffness, a parameter which 
depends on the material properties and the contact 
geometry [13], and  is the borehole clearance. The 
virtual work due to contact force is: 

hK
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where zc is impact location. The velocity of the collar at 
the contact point given as: 

(5) φ
 

where rc is the position of the geometric center at the 
impact location and φ  is given by: 
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A damping force resulting from hydrodynamic drag of 
mud is also acting on the collar. The virtual work due to 
this force is considered as: 
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where fρ  is the density of the drilling mud and is 
the hydrodynamic drag coefficient. For a rotating drill 
string , gyroscopic moments result from the change in 
the angular momentum in its bending motion. The 
virtual work of such moment can be written as: 

DC
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where  is the cross section mass moment of inertia. 
Finally, the axial WOB excitation, and bit formation 
interaction can be expressed as: 

PJ

(9) 

0P , , , and  Ω  are the static component of the 
WOB, the amplitude of fluctuating component, the bit 
constant, and the drilling angular velocity, respectively. 
The virtual work due to axial force is: 

fP n

(10)

All component of potential and kinetic energy and 
virtual work of forces are defined. The governing 
equations of system can be derived by using Lagrange’s 
equation:  
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The equations of motion for coupled axial-lateral 
vibrations are obtained by using assumed mode 
method: 

(12))=u
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In equations (12)-(14) the unknowns , ( )tiα ( )tjβ  and 

( )tkγ   are generalized coordinates,  and ( )ziϕ ( )zjζ  are 
sets of admissible function that satisfy the geometric 
boundary conditions in axial and lateral motions, 
respectively. The deformation  is due to the axial 
load given as: 
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The admissible functions ( )ziϕ are selected as the 
normalized mode shapes of a simply supported beam in 
axial motion, 
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and ( )zjζ  are chosen as normalized mode shapes for 
the fixed-free bar in transverse motion:  
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Substituting equations (15)-(17) into equation (1)-(10) 
and applying Lagrange’s equation for general 
coordinate, a set of non-linear  ordinary differential 
equations for coupled axial-lateral vibration is obtained. 
These equations are shown in Appendix A.  
 
2.2. Inclusion of Torsional Vibration Effects 
Torsional vibrations in drill string  play an important 
role in many issues of drilling such as rate of 
penetration (ROP), over-torque drill pipe connection, 
twist-offs, premature bit wear and etc.  
These vibrations can be observed either as fluctuations 
in the current through the electric motor that drives the 
rotary table. Commonly torsional vibrations in drill 
string  are observed in three parts, namely between 
motor and rotary surface, drill pipe and drill collar. The 
drill collar is assumed to be rigid in torsional vibration 
since the collars are much stiffer than the drill pipe. 
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Torsional vibration in drill pipes and collar are very 
important. Due to these torsional vibrations the angular 
velocity of rotary surface varies with time ([1],[5]). In 
some studies the variation in angular velocity of the 
rotary table is defined using sinusoidal functions [9]. In 
present study, torsional vibrations of the parts between 
motor and rotary table and drill pipe are investigated 
and the torsional vibration is assumed coupled with the 
axial and the lateral vibrations. In figure (3) the power 
transmission system consisting of motor, rotary table 
and drill pipe is shown.  

( ) ( )
( )RDrHeaviside

DrKVsignT

c

chpccont

−

×−−= ⎟
⎠
⎞

⎜
⎝
⎛

2
3

μ

 

 
Fig 3. Power transmission system 

 
The equations of motion for torsional vibration are 
obtained as: 
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where , and  are, the motor, the rotary table, and 
the bit angular velocities, respectively.  is mass 
moment of inertia of rotary table plus 2/3 of drill pipe 

mass moment of inertia.  is equivalent torsion 

stiffness of the drill pipe, , and   are torsion 

stiffness and damping  of power parts  ,  is mass 
moment of inertia for BHA which includes drill collar 

and 1/3 of drill pipe mass moment of inertia.  is the 
torque from bit and  is the torque due to tangential 
force of contact between well and collar. Main 
parameters in bit torque are weight on bit (WOB), type 
of bit and bit speed. There are several models for bit 
interaction torque ([5], [6], [14], [9]). In this study the 
model offered in reference [6] is adopted, i.e.: 

Ω Tφ
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dpK
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where W is WOB,  are bit constants, and tff ,0 γ  is 
the decay parameter. The torque due to tangential 
contact force is expressed as: 

(21)

The governing equations can now be derived by 
combining axial-lateral vibration equations derived in 
section 2.1 with torsional equations (18) and (19) with 
the variables ( ) ( ) (ttt kji )γβα ,,  and ,( )tTφ ( )tλ . This 
yields the set of coupled ordinary non-linear differential 
equations shown in Appendix A.  
The obtained governing equations are coupled non-
linear differential equation with time varying 
coefficients. The axial and lateral motions are coupled 
due to non-linear elastic deflections and torsional and 
lateral motions are coupled due to contact torque and 
variation of angular velocity of rotary table due to 
torsional vibrations.  
The transverse motions in the x and y directions are 
coupled due to gyroscopic moments, hydrodynamic 
damping, and impact and friction forces. The time 
varying coefficients are due to the axial excitations and 
axial-transverse coupling. The governing equations also 
contain harmonic excitations due to the axial force 
generated by the bit, and out of balance mass. in the 
next section the numerical solution of the obtained 
equations is presented and the coupling effects are 
investigated. 

 
3. Numerical Simulations 

In the numerical simulations, the axial and lateral 
deformations are approximated each with one mode 
only.  
In addition, an initial static deflection due to weight 
force is implemented in axial deformations. Clearly, the 
existence of impacts would require a multi-mode 
analysis which will increase the dimension and 
complexity of the non-linear problem.  
Since the objective of this work is to improve the 
understanding of the coupling effects of torsional, 
lateral and axial motions, and interactions between 
various phenomena such as whirling, parametric 
excitation, etc.  
Therefore one-mode approximation for the 
deformations is adequate. Note that the one-mode 
approximation used for the transverse motion also 
simplifies the contact condition in that the impact 
always occurs at the mid-span of the last drill collar 
section. A numerical procedure is employed to solve 
the set of obtained equations. The problem is solved 
using Runge-Kutta method in MATLAB (command 
line ODE45). The parameters used in the simulation are 
shown in table (1), which represent a typical case in an 
oil well drilling operation. 
Number of simulations were carried out assuming the 
bit factor n=1. In this case the forcing frequency, nΩ is 
equal to the rotating speed and the critical whirling 
speed is 5.725m/s. The dynamic response of collar in 
lateral motion at the rotating speed 4.8 rad/s for 
uncoupled torsion and fully coupled model is shown in 
Fig. 4 and 5.  
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Table 1. The parameters of a typical oil well 
)(1 ml  20 μ  0.1 
)(ml  1000 γ  0.02 

)/( 3mKgρ  7800 
tf  0.0762 

)(GPaE  210 )/( mNKup

 
90 

)/( mNK h
 111071.6 ×  )  /( mNsCup 1342 

)(mDc
 0.05 )(0 me  0.0065 

)/( 3mKgfρ  1500 )  (0 NP 5101×−
 

)  (NPf
31050 ×−    

 
In this situation the full coupled model predicts the 
contact between collar and well but amplitude of 
vibration in axial-lateral model is smaller than 
clearance between collar and wall. Due to the presence 
of dissipative effects such as friction and hydrodynamic 
damping, the vibrations eventually settle into a limit 
cycle behavior.  
 

 
Fig 4. Deflection at  rad/s for axial-lateral 

model 
8.4=Ω

 

 
Fig 5. Deflection at  rad/s for fully coupled 

model 
8.4=Ω

 

When the rotating speed is increased to 5.725 rad/s it is 
equal to the estimated critical whirling speed. The 
response for this case is shown in Fig. 6 and 7 and as 
expected the whirling amplitudes are larger than those 
of the previous case. 
 

 
Fig 6. Deflection at 725.5=Ω  rad/s for axial-lateral 

model 
 

More information about the whirling behavior can be 
obtained by observing the whirling speed shown in Fig. 
8 and 9. For the time period covered by the simulation 
the whirl direction continuously changes between 
forward and backward. 
 

 
Fig 7. Deflection at 725.5=Ω  rad/s for coupled 

model 
 

 
Fig 8. Whirling speed at  rad/s for axial-

lateral model 
725.5=Ω
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Fig 9. Whirling speed at 725.5=Ω  rad/s for fully 

coupled model  
 
Next the angular velocity is increased to 8 rad/s, and 
the resulting dynamic response is shown in Fig. 10 and 
11.  
At this speed the axial-lateral model don’t predict any 
contact but the fully coupled model shows contact 
between collar and well. The maximum angular 
velocity that axial-lateral model is predicting contact at 
this case is equal 6.8 m/s.  
However when the torsional vibration is coupled with 
the axial-lateral model the predictions for contact starts 
at lower speeds and ends at higher speeds comparing to 
the predictions of the model with no coupling effects 
between torsional and other motions. Consequently the 
fully coupled model increases the range of critical 
angular velocity of drill string. The coupling between 
axial-lateral vibrations affects the natural frequencies in 
lateral motion [7]. However the coupling between 
torsional and to axial-lateral motions doesn’t have any 
effect on theses frequencies. This can be seen by 
observing that the critical speeds in both models are the 
same. Both models have the same critical angular 
velocity but the responses of the models at the same 
velocities are not same.  
 

 
Fig 10. Deflection at  rad/s for axial-lateral 8=Ω

model 
 
 

 
Fig 11. Deflection at 8=Ω  rad/s for fully coupled 

model 
Next the predictions of contact forces between wall and 
collar in critical angular velocity are investigated. 
Distribution and amplitude of contact forces predicted 
by both models are shown in Fig. 12 and 13. The fully 
coupled model predicts lower number of impacts and 
smaller impact force levels compared to the axial-
lateral model predictions. The highest level of impact 
force is predicted as 1412 KN using the axial-lateral 
model while the same value is predicted as 544 KN by 
the fully coupled model. Also the number of impacts 
during a period of 100 sec in the results of axial-lateral 
model is 20169 while the other model predicts this 
value as 13903.   
This is due to the fact that during impacts the applied 
torque on the collar reduces the collar angular velocity 
and the system rotates away from critical speed.  
In the axial-lateral model this phenomenon is not 
included and therefore the impact forces and their 
sequence of occurrence are higher. 
 

 
Fig 12. Amplitude of contact force for 725.5=Ω  

rad/s (axial-lateral) 
The parametric resonance in drill string  is reported in 
number of references ([8], [15], [16]). The followings 
investigates the parametric resonance in the system 
which happens when the frequency of applied forces 
are twice of the lateral natural frequency. 

 
Fig 13. Amplitude of contact force for  rad/s 

(fully coupled) 
725.5=Ω
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The loading frequency, , is set as twice of the 
lateral natural frequency of drill string  which is 5.725 
rad/s. For a three cone bit (n=3), the critical angular 
velocity in parametric resonance is 3.817 rad/s.  

Ωn

Assuming zero eccentricity to eliminate the excitation 
due to unbalances the predicted responses of fully 
coupled model and the axial-lateral model are shown in 
figures 14 and 15. Both models show increase of 
amplitudes due to parametric resonance at 3.817rad/sec, 
but the fully coupled model predicts lower number of 
impacts due to the change in the rotational speeds.  
 

 
Fig 14. Radial deflection for  rad/s and 

e0=0.0 (axial-lateral) 
817.3=Ω

 

 
Fig 15.  Radial deflection for  rad/s and 

e0=0.0 (fully coupled) 
817.3=Ω

 
4. Conclusion 

A fully coupled model for axial, lateral, and torsional 
vibrations of drill strings is presented and its 
predictions are compared with the conventional axial-
lateral model results. A considerable difference 
between the results of the two models is observed. The 
fully coupled model predicts lower number of impacts 
and smaller impact force levels compared to the axial-
lateral model predictions at the critical speeds. These 
differences can be explained considering the fact that 
during impacts the applied torque on the collar reduces 
the collar angular velocity and the system rotates away 
from critical speed. In the axial-lateral model this 
phenomenon is not included and therefore the impact 
forces and their sequence of occurrence are higher. 
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Appendix A 

In order to develop the governing equations we 
substitute equations (16-17) into equations (12-14) to 
obtain the deformed shapes of the system. Next by 
forming the energy terms, equations of motion are 
obtained using Lagrange’s equations, equation (11), In 
deriving the equations of motion only one mode is 
considered in the assumed responses, i.e. the one 
specified in equations (16) and (17). Choosing the 
generalized coordinate in equation (11) as iq α  leads 
to: 
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Second governing equation is obtained by choosing 
in equation (11) asiq β : 
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By employing equation (11) while γ  is the generalized 
coordinate one obtains the following equation: 
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Substituting equations (20) and (21) into equations (18) 
and (19) one obtains two following equations which are 
coupled with equations (22-24) and together form the 
set of equations governing the dynamic behavior of 
drill string : 
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